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It is known (for instance, [i]) that radiation can substantially influence the gas flow 
around a body upon reentry into the atmosphere at velocities on the order of the second cos- 
mic and higher, and the radiation heat fluxes are commensurate with the convective or even 
higher. Theoretical investigations of hypersonic radiating gas flow around bodies were per- 
formed mainly numerically (see the bibliography in [I]). Hypersonic flow around a wedge and 
cone with radiation taken into account (plane and axisymmetric flows, respectively) is ex- 
amined in [2] in a zeroth approximation of the method of the thin shock layer [3]. In addi- 
tion, it is important to investigate the features of radiating gas flow around three-dimen- 
sional bodies. 

In this paper the three-dimensional nonstationary hypersonic flow of a radiating gas in 
the shock layer near the windward surface of a small span wing is investigated with a surface 
shape varying in time. Application of the method of the thin shock layer [3, 4] permitted 
obtaining a general solution of the gasdynamic equations that expresses all the flow param- 
eters in terms of the bow shock shape. The problem for its determination is formulated. A 
class of exact solutions is obtained. The influence of radiation on the shock layer thick- 
ness, the density, the temperature, the pressure distribution is studied. The radiation 
heat flux distribution to the wing is computed. 

i. Let us examine the three-dimensional hypersonic flow around a wing at a finite angle 
of attack ~ with radiation taken into account at high temperature. We shall consider the 
compressed gas layer abutting the windward surface of the wing to be optically transparent, 
i.e., the mean free path length of the radiation L r is much less than the characteristic 
thickness of the compressed layer d (the optical thickness of the layer is r = d/L r << i). 

We here neglect radiation absorption in the gas, as is justified for not too low flight 
altitudes [i]. The state of the gas before and after the bow shock is taken at equilibrium. 
We write the system of nonstationary motion equations for a radiating gas in the form [i] 

dV/dt  ~ OV/Ot + ( V . v ) V  = --" (Up)vp ,  ( 1 . 1 )  

09/0t ~ V" (pV) = O, pdh/dt - -  dp/dt + 4~kvB = O, 
p/ph = (• - -  1) /•  •  (p, h) = h/e (p, h), 

PV = 9 B T ,  B = (~/~)T ~, 
[ 

w h e r e  x ,  y ,  z a r e  C a r t e s i a n  c o o r d i n a t e s  i n  a s y s t e m  c o u p l e d  t o  t h e  w i n g  ( F i g .  1 ) ,  t i s  t h e  
t i m e ,  V = ( u ,  v ,  w) i s  t h e  v e l o c i t y  v e c t o r ,  p ,  p ,  h ,  e ,  T,  ~ a r e  t h e  p r e s s u r e ,  d e n s i t y ,  e n -  
thalpy, specific internal energy, temperature, and molecular weight of the gas, • is the 
effective adiabatic index, R is the universal gas constant, o is the Stefan--Boltzmann con- 
stant, and the expression for the divergence of the radiant energy flux vector is written by 
using the Planck mean absorption coefficient kp(p, T) [i] 

k ~ B = . t ' k v B v d ~ ,  
0 

where B~, B are, respectively, the intensity of equilibrium radiation with frequency ~ and 
the total radiation intensity. According to [2], at temperatures T ~ 14,000~ and pressures 
P S i0 ~ Pa we have the approximate analytic dependence 

k p ~ ,  T) = apT n, 

where a, n are constants. As usual, the radiation energy pressure and density were not 
taken into account in writing (i.i). 
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In the general case the wing has a time-varying shape. The condition of nonpenetration 
on a wing surface moving at a velocity D b along the external normal n b has the form 

( V b - D b ) ' n b = O "  (1.2) 

Values of the functions directly behind the shock moving at a velocity D s in the direction 
of the external normal n s are related to the unperturbed stream parameters (with the sub- 
script =) by the following: 

Vs = V~  + Vn~(l  -- k)n~, ( 1 . 3 )  

p,=p= + p=V.=(t--k), h~=h= + ~  

where Vn~ = (D s -- V~).ns; k = P~/Ps 

2. To investigate the stationary flow around the windward surface of a thin small-span 
wing of variable shape at large values of the Mach number M= and values of x,, close to one 
for the effective adiabatic index behind the shock, we use the method of the thin shock layer 
[3]. We introduce the small parameter e, equal to the ratio of the densities on a strong 
shock (M~sin=~ >> i) 

•176 ( 12  ) 
e = • • = •  p~V~s in~a ,  T V ~ s i n ~  a . 

The o r d e r  o f  m a g n i t u d e  o f  t h e  t e m p e r a t u r e  r a t i o  on a s h o c k  i s  d e t e r m i n e d  by t h e  p r o d u c t  
2 2 A = cM~sin  ~. I n  c a s e  A = 0 (1 )  a s  c § 0 ,  M~ § ~ [ 4 ] ,  t h e  gas  t e m p e r a t u r e  i n  t h e  s h o c k  l a y e r  

is insufficiently high and the influence of radiation is slight. For A >> i, as will be 
seen later, the temperature can reach values for which the influence of radiation on the 
aerodynamic characteristics will be significant. Precisely this case is examined below. 

Assuming that as c § 0, A + +, r = 0(cA n) § 0 the wing thickness measured from the plane 
y = 0 is of the order of the thickness of the compressed layer (Lc tana), while the wing span 
is of the order of the Mach angle in the compressed layer (e I/2 tan d) [4], we introduce di- 
mensionless independent variables of the order of one 

t o = t V ~  cos a / L , x  ~ = x / L , y  ~ = y / L e t g  a , z  ~ = z / L e l l 2 t g  a,  ( 2 . 1 )  

L is the characteristic longitudinal dimension. For flow around a wing with a shock attached 
to the leading edge, or at least to the wing apex, the desired gasdynamic functions are rep- 
resentable in the form of the expansions 

u / V ~ =  cosa  + e s i n a t g a u ~  ~ yo, z o, t o ) + . . . .  (2.2) 

v /V~  = e sin ~v~ (x~ y~ z~ t~ + . . . .  w / V ~  =el /2  sin aw~ (x~ g~ z~ t~ + . . . .  

p = p~ + p ~ V ~ s i n 2 a [ l  + spO(xO, go, z o, t o ) + . . . ] ,  

p/p= = e-lpO (x o, go z o, t o) + . . . .  2 h / V ~  = sin2ah ~ (x ~ go z o, t o) + . . . .  

T / T ,  = A T  ~  ~ y~ z~ t~ + . . . ,  B = ( o / ~ ) T ~ A 4 B  ~  ~ yo zO, t o ) +  . . . .  

k p E =  r e - ! c t g a ( T ~  n +  . . . .  9 / ~ = ~ o +  . . . ,  • 2 1 5  . . .  

We consider the constant ~o < 1 dependent on the degree of gas dissociation during passage 
through the shock to be known. ~ Substituting (2.1), (2.2) into (1.1)-(1.3), we have the fol- 
lowing system of equations in a first approximation (superscripts omitted): 
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u t + u ~  +'-vu u +wu~ : 0; 

Pt + P~ + (9v)y + (9w)~ : 0; 
w t + w~ §  + w w ~  : 0 ;  

9(v~ + v~ + vvy + wv~) : - -py;  

9(hL + 

For y = S*(x, z, t) on the shock we 

S* 

h~ + vh v + who = --WrBT~; 

It = 9 -I, 9 = , ~T-I, B = T 4. 

obtain the relationships 

s: s* sY l, s:, 7)s = -I- t . . . .  

p~= 2(S :  + S~) - -  S: z -  t, 

On the wing surface for y = F*(x, z, t) 

Here the dimensionless parameter 

9 s : t ,  h ~ : ' l ,  T~=  p. 

vb : F:  + F~ + wbF*. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

8oTi 
Wr -- rA 4 

9~V~ sin s 

is theratio between the radiant energy flux and the convective energy flux. Let the rela- 
tionship of the small parameters e, A -I, be such that W r = 0(i), i.e., A = 0[~-I/(n+~)]. 
Therefore, in addition to the known geometric similarity parameter ~ = s/(Lg I/2 tan ~) [4] 
(s is the wing semispan), the solution for radiating equilibrium gas flow around a wing will 
depend also on the parameters W r and ~. The hypersonic law of plane sections for slender 
bodies at high angles of attack [5, 6] with the addition of these similarity parameters will 
be valid even for radiating gas flow around a wing since (2.4)-(2.8) do not contain perturba- 
tions of the longitudinal velocity u which is determined from (2.3) after (2.4)-(2.8) has 
been solved. 

In conformity with the general result [7-9], a fundamental property of high-density 
radiating gas flow is conservation of the ratio between the vorticity flow component ~v = 
Wy and the gas density along the particle motion trajectory in the shock layer. This prop- 
erty is expressed mathematically in the form of an integrable combination of (2.4) and (2.5): 

(wSp) t + (w~/p) x + v ( w j p ) y  + w(wu/P)~ : 0. ( 2 .11 )  

This general conservation property [7-9] for high-density gas flow permits obtaining an in- 
teresting result of practical importance in the case of radiating gas flow. On the basis 
of the relationships (2.11) and (2.8), we arrive at the deduction that the product ~B is 
conserved constant along the particle trajectory (along the streamline in the stationary 
case) 

+ + 0 (2.12) 

Therefore, there is a relationship between the vorticity flow component, which is a 
kinematic characteristic of the flow field, and the radiation intensity distribution, meaning 
the radiation thermal flux to the body. The relationship (2.12) set-up shows that the radi- 
ation intensity is greater in domains of weakly vortical flow than in strongly vortical flow 
domains, where this dependence is sufficiently strong since B is proportional to ~a (2.12). 

3. Equation (2.11) is important not only from the physical but also from the mathemat- 
ical viewpoint. The existence of a general integral for the nonlinear system of partial dif- 
ferential equations (2.4)-(2.8), that follows from (2.11), permits obtaining an analytic So- 
lution of this system. In fact, we use (2.11) together with (2.4) and we turn to the inde- 
pendent variables x, w, z, �9 = x -- t. In the new variables, the system (2.11), (2.5)-(2.8) 
and the boundary conditions (2.9), (2.10) describing the nonstationary radiating gas flow in 
the shock layer acquire the same form as for the stationary flow, and contain functions de- 
pendent on r as on a parameter: 

(gg~)x + w(ogw)z = 0; ( 3 . 1 )  
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for y = S(x, 

for y = F(x, 

~' = Yx + wYz; 

P~,, = --PY~,,(~'x + W~'z); 
9n+~(gx + wgz) = K/(n + 4); 

z, z) = S*(x, z, x- z) or w =--Sz(x , z, z) 

~ ' ~ = S ~ - - S ~ - - I ,  l ) ~ = 2 S ~ - - S ~ - - t ,  

z ,  ~)  = F * ( x ,  z ,  x -  z )  o r  w = Wb(X,  z ,  z )  

v~ = Fx + w~Fz. 

(3 .2)  

(3 .3)  

(3.4) 

9~ = 1; (3.5) 

(3 .6)  

The parameters Wr, p are in the problem for y, v, p, p, h only in the form of the combinations 
K = Wr~n+a(n + 4). Double integration of (3.1) yields (r = ~vXp is an arbitrary function de- 
fined below) 

~ r  (u,', z-- u"x, T) 
Y = F(x, z, r) + ~,-~-~-, Z ~  dw'. (3.7) 

t~ b 

Let us note that in addition to w the quantities e = z -wx, T are constant along the tra- 
jectories as can be seen by evaluating the total derivatives of these quantities as had been 
done for w in (2.5). Using (3.7), we obtain a formula for v from (3.2) 

~ ' = - b ' x + w F ~ +  ; [(w-- w') Fo, r ]dw" rb ----O -(9~ + u''~ 9 Pb [(wo)x + w(wb),,l, (3 .8)  
tE D 

which satisfies condition (3.6) for the satisfaction of one of the relationships 

F b = 0; (3 .9)  

(u'b),~ + u'~(u'b)~ = 0.  ( 3 . 1 0 )  

The pressure distribution is found from (3.3), (3.7), (3.8) in the form 

p = p ~ +  y (u~A-w 'v~)F(w ~ , z - w ' x , r )  dw'. (3 .11)  
N) 

To determine the form of the function F we use (3.7) and (3.8) for w = w s and the conditions 
(3.5) for Vs, Ps' Since Ps = i, we consequently obtain analogously to [7] 

Fs(x , z, "r) ---- (SzSzz - -  Szx) -1. (3.12) 

Let X(w, e, z) denote the abscissa of the intersection between a given gas particle trajec- 
tory and the shock defined as the root of the functional equation 
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w = --Sz( X, w X + 0, ~). (3.13) 

Then the function F is expressed in the flow field in the form 

r (w,  0, ~) = r~(%, w% + O, ~). ( 3 . 1 4 )  

E q u a t i o n  ( 3 . 4 )  i n  t h e  v a r i a b l e s  x ,  w, e ,  ~ ha s  t h e  f o r m  

pn+~px = K/(n + 4). 

I n t e g r a t i n g  t h i s  w i t h  t h e  b o u n d a r y  c o n d i t i o n  Ps = 1 f o r  x = X(W, 0,  x) t a k e n  i n t o  a c c o u n t ,  
we obtain the density distribution 

p(X, W, 0, T) : {i + K [ x  - -  %(w, 0, T)]} 1/(n+~) ( 3 . 1 5 )  

and the values of the temperature and enthalpy 

T = ~h = p{i + K [ z  - -  ~(w, O, T)]}-I/(~+~L 

from (2.8). Hence, it is seen that in the case of an optically transparent gas layer, radi- 
ation results in a diminution in the temperature and enthalpy and an increase in the density 
along the particle motion trajectories. 

Therefore, the gasdynamic and thermodynamic radiation gas functions are expressed in 
the form of quadratures and functional relations in terms of the shape of the shock surface 
which, according to (3.7), (3.12), (3.15), should be determined jointly with the function F 
from the system of two equations 

--$z 

S ( x , z , ~ ) I = F ( x , z , T )  + ~ r ( w , z - - w x ,  r) dw I " (3.16) 
U 

Wb {i+K[z--X(~L' ,  z - -wz ,  ~)1},~+4 

r(-S~,  ~ + S~z, , )  = (S~S~ - S ~ ) - ~ .  

Let us note that the function Wb(X, z, z) is defined analogously [i0]. 

If the approximation of an optically transparent gas layer, and therefore, of (3.15) 
are not applicable, then the analytic expression for the density can be found either from 
the solution of other approximate equations or by approximating the results of a numerical 
computation of one-dimensional radiating gas flow at constant pressure. The fundamental 
formulas (3.7)-(3.12) remain valid here. 

4. Extending the results obtained in the stationary case [8], we convert the solution 
obtained by taking X as a new independent variable in place of w. We have along the trajec- 
tory of this particle 

z -  [ = - -Sz(x ,  ~, x ) ( x -  2), w = --Sz(%, ~, r), (4.1) 

where ~ is the z coordinate of the intersection between this trajectory and the shock. Dif- 
ferentiating these equalities for constant x, z, r with (3.12) and (3.14) taken into account, 
we obtain 

dw = d z l { r [ i  - -  (x - -  %)Sz~( x, ; ,  r)]}. 

We now o b t a i n  i n  p l a c e  o f  t h e  s y s t e m  ( 3 . 1 6 )  f o r  t h e  s h o c k  s h a p e ,  an e q u a t i o n  
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[ t §  n+4 
S ( x , z , ' ~ ) = F ( x , z , v ) +  1-- (x-- ~:) S~ (Z, ~, ~) d~, (4.2) 

Z/: 

which should be solved in conjunction with (4.1). The expressions for the vertical velocity 
component and the pressure acquire the form 

v=Fx--S~(x ,~ , 'QF~+ [1--(x--7~)S.~]S~+(x--z)(S~--~ S~= ( 4 . 3 )  

[ - - + K - 

"+__2 ] 

+ K ' 
(4.4) 

p = 2 S ~  - -  S~ - -  i + ------. .-7;,  , d z ' ,  
t - - ( x - - ~ ) S ~  

where S z = Sz(X" , ~, ~), etc., and Szz b = Szz[Xb, Ze(Xb), T]. 

Since the shock layer can be, considered locally one-dimensional in the problem under 
consideration when radiation transfer is taken into account, we used a one-dimensional ap- 
proximation analogous to [2] to calculate the radiation heat flux. Then applying the known 
solution [ii] of the radiation transport equation and neglecting radiation from the wing 
surface, we obtain the following expression for the magnitude of the local radiation heat 
flux to the wing: 

qb (x, z) = p~V% sin a aQ (x, z), --2-- 
~r nq-5 

Q (x, z) = K ~ It -~ K (x-- %1] n+4 
2(n @4) l - -  (x-- X) Szz (%, ~; "~) d%. 

Xb 

(4.5) 

In writing (4.2)-(4.5) it is taken into account that X = x on the shock. The values of Xb 
for trajectories lying on the wing surface will be found by assuming the shape of the wing 
leading edge to be independent of the time in planform z s Ze(X). 

If the shock is attached to the edge, i.e., Se(x , ~) = Fe(x , z) along it, then by satis- 
fying (3.5) by using (3.6), we obtain on the edge 

e 1 , e F ~ ) 2 _ _  ~ ] ,  ~;('' T)= --Sz= - ~  [Ze - -  F z - -  V ( Z ;  + ( 4 . 6 )  

where Se(x  , z) = S[x ,  Ze(X) , x ] ;  F e ( x  , r )  = F [ x ,  Ze(X) ,  z ] ;  F~ = F z [x  , z ( x ) ,  r ] .  To r e a l i z e  
such a regime, it is therefore required that [z e + Fz [e" ~ 2. For the flow around a wing with 
a smooth edge shape in planform, Xb is determined from (4.1) in which E = ze(X) , S z = S~ 
should be put. We represent the shape of an edge having a break at x = 0 in the form of 
two smooth pieces z = Ze(X) for x > 0 and z =-Ze(X ) for x ~ 0 (zs # 0). Then for [z[ ! 
We(+0, T)x in the central part of ~he wind, there is a fan ~f trajectories passing through 
the apex. Therefore • = 0 for them. Between the outer trajectories of this fan and the 
leading edge, Xb is determined from (4.1) and (4.6). This case is illustrated in Fig. i. 

If the shock is attached just to the apex and is detached from the edge, then all tra- 
jectories on the wing pass through the apex and Xb = 0 on the whole wing surface. 

5. Because of the presence of functional relations, the solution of the system (4.1) 
is fraught with known mathematical difficulties in the general case. However, a class of 
its particular exact solutions exists which corresponds to the following body surface and 
shock types: 

f (x, z, ~) t (~, ~) ~ 2 , S ( x , z , ~ ) = a ( x , ~ )  f (~' ~) 2 2 , %b:0. (5.1) 

The shock layer thickness equals 
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ff 1 
G (x, ~) = 1t ~- K (x--  %)] n+a 

t+(z--X) I(X,~) d%. 
0 

The case f(x, ~) = b/x corresponds to the stationary flow around a conical wing of invariant 
shape with transverse curvature equal to b/(x tan a)in the plane of symmetry (z = 0). The 
shock layer thickness is constant here in the transverse section x = const 

G ( x ) ~  [l + K ( x - -  7.)1 ~+4 
(i - -  b) % + bz %d%. ( 5 . 2 )  

0 
F o r  s m a l l  K we o b t a i n  t h e  f o l l o w i n g  a p p r o x i m a t e  f o r m u l a  f r o m  ( 5 . 2 )  

Kx2 ( _ = f ) ,  ~ o - -  ( t _ b ) ~  G ( X ) ~ X ~ l s ~  .(n ~-4) ( t - -  b) ~s0 t b l n b - J - t - - b  

In the Newtonian approximation the radiation does not influence the pressure distribution 
(see [2], for example). The solution of the problem in a first approximation to the Newton- 
ian solution permits taking account of the influence of the radiation on the pressure. The 
calculation of the pressure distribution along the line of intersection of the plane of sym- 
metry with the wing surface by means of (5.1), (5.2), (4.3), (4.4) results in the equation 

i {  2!~ 2 2bp~ 
p b ( X ) = 2 G ' ( x ) - - t  + .  -[(~__b) z + b z ] ~  + p [ ( i _ _ b ) ? : + ~ x  I + 

0 

O 2 o (i - -  b) ~ (l --  b) 7, -,- bz ~ t) [(1 - -  b) 7, ~- bx] " 

(5.3) 

According to (4.5) and (5.1), the radiation heat flux is constant along the span, which is 
a corollary of the constancy of the compression layer thickness 

n+5 x 

0 

To obtain the upper bound of the influence of radiation we later set n = 0. Results of com- 
putations by means of (5.2) and (5.3) are represented in Figs. 2 and 3 for b = 0.5 and K = 
0, 2, 4 (curves 1-3, respectively). It is seen that the radiation results in a diminution 
in the shock layer thickness, in longitudinal curvature of the compression shock, and also 
to a pressure drop along the root chord of the wing as compared with a flow without radia- 
tion (K = 0). The density distribution 0b(X) along the root chord, is also given in Fig. 3, 
as obtained from (3.15) for X A 0. The influence of the curvature parameter b on the shock 
layer thickness and the pressur e distribution is illustrated in Figs. 4 and 5 for K = 2 
(curves 1-6 correspond to b = 0.:25, 0.75, 1.25, 1.75, 4.75, 7). As the parameter b grows, 
the correction to the Newtonian value of the pressure changes sign and becomes negative (Fig. 
5), while the pressure drop between the apex and the take of the wing, which characterizes 
the influence of the radiation, diminishes. 

The results obtained show that in the flow around a conical wing, the shape of the com- 
pression shock and the whole flow do not, in contrast to [4], possess the property of conicity 
because of the influence of radiation, and should be investigated on the basis of three- 
dimensional flow theory. 

The radiation heat flux distribution along the root chord of the wing is shown in Fig. 
6 for b = 0.25 and K = 0.8, 2, 3.2, 4 (curves 1-4, respectively). As K increases and b = 
const, the shock layer thickness diminishes somewhat (see Fig. 2) while the radiation inten- 
sity grows strongly, which results in growth of the heat flux. For fixed K the shock layer 
thickness diminishes as b grows (see Fig. 4), whereupon the heat flux to the wing becomes 
less. 

I. 

LITERATURE CITED 

G. I. Maikapar (ed.), Nonequilibrium Physicochemical Processes in Aerodynamics [in Rus- 
sian], Mashinostroenie, Moscow (1972). 

834 



2. N. N. Pilyugin, S. L. Sukhodol'skii, and G. A. Tirskii, "Hypersonic radiating gas flow 
around a cone and wedge," in: Mathematical Modeling of Aerothermochemical Phenomena 
[in Russian], Vychisl. Tsentr Akad. Nauk SSSR, Moscow (1974). 

3. G. G. Chernyi, Hypersonic Gas Flow [in Russian], Fizmatgiz, Moscow (1959). 
4. A. F. Messiter, "Lift of slender delta wings according to Newtonian theory," AIAA J., 

i, No. 4 (1963). 
5. V. V. Sychev, "On hypersonic flow around slender bodies at high angles of attack," 

Dokl. Akad. Nauk SSSR, 131, No. 4 (1960). 
6. A. V. Krasil'nikov, "On vibrations of slender bodies at high angles of attack in hyper- 

sonic flow," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6 (1969). 
7. A. I. Bolubinskii and V. N. Golubkin, "On the three-dimensional hypersonic gas flow 

around a slender wing," Dokl. Akad. Nauk SSSR, 234, No. 5 (1977). 
8. A. I. Golubinskii and V. N. Golubkin, "On the theory of three-dimensional hypersonic 

gas flow around a body," Dokl. Akad. Nauk SSSR, 258, No. 1 (1981). 
9. A. I. Golubinskii and V. N. Golubkin, "Three-dimensional hypersonic flow around a body 

of finite thickness," Uch. Zap. TsAGI, 13, No. 2 (1982). 
i0. V. I. Bogatko, A. A. Grib, and G. A. Kolton, "Hypersonic gas flow around a slender wing 

of variable shape," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4 (1979). 
ii. S. I. Pai, Radiating Gasdynamics [Russian translation], Mir, Moscow (1968). 

EQUATIONS OF MECHANICS OF A GAS-PARTICLE MIXTURE 

A. P. Ershov UDC 532.529 

We consider the non-steady, one-dimensional motion of a gas containing suspended parti- 
cles. For subsonic relative velocities of the gas and particles, the equations of the system 
have two complex characteristics [i] corresponding to instability of the solution to the 
Cauchy problem. The physical cause of the instability [2, 3] is a rise in the filtration 
velocity of the gas and a corresponding drop in pressure in regions where there is an in- 
crease in particle concentration. The pressure gradient encourages particle coagulation and 
perturbations grow exponentially. The rate of growth is inversely proportional to the wave- 
length of the perturbation. 

It is important to be able to separate real physical flow instabilities from formal in- 
stability arising because of approximations in describing the mixture. An example of the 
latter is the rapid growth of short wavelength perturbations. In [3] an essential difference 
was pointed out between problems admitting steady motion of the phases (suspension of layer, 
precipitation of a suspension) from those of the non-steady type (passing of a shock wave 
through a suspension in gas). In the latter case, the velocity of relative motion of the 
phases goes to zero with time, and if the nonphysical fluctuations are removed, the Cauchy 
conditions can be correct. In the numerical solution of such problems, this is always under- 
stood. 

In [3, 4] the random motion of the particles was considered as a stabilizing effect. 
In the present paper, we consider the non-steady-state problem at small particle concentra- 
tions, where the random motion of particles is not important. The equations obtained here 
include explicitly the interphase forces and the relative volume of the dispersed phase aver- 
aged over the volume of the particle. Thus the growth of short wavelength perturbations is 
suppressed. 

i. Statement of the Problem and Preliminary Estimates. Following the treatment in 
[i, 3], we ignore the internal properties of the subsystem in the equations of mass and mo- 
mentum and limit the discussion (as in [3]) to the case of a barotropic gas. Thus we do not 
have to deal with the energy equation. The system of equations has the form [3, 5]: 
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